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REVIEW

Self-Organization, Embodiment, and
Biologically Inspired Robotics
Rolf Pfeifer,1* Max Lungarella,1 Fumiya Iida1,2

Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit
the design of autonomous robots. Biological organisms have evolved to perform and survive in a
world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of
information. Industrial robots, in contrast, operate in highly controlled environments with no or very little
uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics
will eventually enable researchers to engineer machines for the real world that possess at least some
of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.

Although traditionally, biologically in-
spired (bio-inspired) robotics has been
largely about neural modeling (for exam-

ple, for phonotaxis, navigation, or vision), recent
developments in the field have centered on the
notions of self-organization and embodiment;
that is, the reciprocal and dynamical coupling
among brain (control), body, and environment.
We will show that most advances converge onto
a set of principles that are implicitly or explicitly
employed by robot designers: First, the behavior
of any system is not merely the outcome of an
internal control structure (such as the central ner-
vous system). A system’s behavior is also affected
by the ecological niche in which the system is
physically embedded, by its morphology (the
shape of its body and limbs, as well as the type
and placement of sensors and effectors), and by
the material properties of the elements composing
the morphology (1). Second, physical constraints
shape the dynamics of the interaction of the
embodied system with its environment (for exam-
ple, because of the way it is attached to the body
at the hip joint, during walking a leg behaves to
some extent like a pendulum) and can be
exploited to achieve stability, maneuverability,
and energy efficiency (2, 3). Third, a direct link
exists between embodiment and information:
Coupled sensory-motor activity and body mor-
phology induce statistical regularities in sensory
input and within the control architecture and
therefore enhance internal information processing
(4). Fourth, viewing an embodied agent (5) as a
complex dynamical system enables us to employ
concepts such as self-organization and emergence
rather than hierarchical top-down control. As we
review some of the recent advances in bio-inspired
robotics, it will become clear that autonomous
agents display self-organization and emergence at

multiple levels: at the level of induction of sensory
stimulation,movement generation, exploitation of
morphological and material properties, and interac-
tion between individual modules and entire agents.

Bio-Inspired Embodied Systems
Artifacts in general and robots in particular are
always designed for a particular task environ-
ment in which they have to achieve certain be-
haviors. In a manufacturing plant, where robots
have to rapidly weld pieces together, precisely
assemble motors, or neatly package chocolates
into boxes, the focus is on speed, precision, con-
trollability, and cost-effectiveness. In contrast,
robots having to perform in the real world should
be able to cope with uncertain situations and
react quickly to changes in the environment.
Biological systems provide an exceptional source
of inspiration. The biological world is immensely
diverse—roughly 1.5 million different species
have so far been identified—and this richness is
also, though at a much smaller scale, reflected in
the different types of robots that have been de-
veloped (table S1). Bio-inspiration originates
from molecular and cellular reproduction (6–8);
slime molds (9); walking insects (10, 11); flying
insects (12, 13); spiders (14); lobsters (15); oc-
topuses (16); fish (17) and other aquatic creatures;
amphibious animals such as salamanders (18)
and snakes (19); four-legged animals such as
geckos (20), mice (21), and dogs (17, 22); and, of
course, primates such as monkeys and human
beings (23–25). Major goals for these robots
are movement, locomotion (crawling, walking,
running, climbing, swimming, and flying), nav-
igation, orientation, manipulation, imitation, and
cooperation. Biology contains especially rich and
useful knowledge for robotics in disciplines such
as neuroscience (in particular, computational
neuroscience and neuroethology), biomechanics,
animal physiology, and systems biology.

Given the vastness of the information avail-
able, the question arises as to what insights from
biology could and should be exploited for design-
ing robots. Simply copying a biological system is

either not feasible (even a single neuron is too
complicated to be synthesized artificially in every
detail) or is of little interest (animals have to satis-
fy multiple constraints that do not apply to robots,
such as keeping their metabolism running and
getting rid of parasites), or the technological solu-
tion is superior to the one found in nature (for
example, the biological equivalent of the wheel has
yet to be discovered). Rather, the goal is towork out
principles of biological systems and transfer those
to robot design. This philosophy underlies, for in-
stance, the rapidly expanding field of bionics, which
seeks to design technology bymimicking the salient
features of biological structures (26). One impor-
tant lesson from bionics studies is that successful
natural designs rely on effective embodiment: on
clever morphology and use of material properties.

If properly applied, embodiment can lead to
surprising insights. Although the idea has been
around for quite some time (27–29), its implica-
tions for the design of autonomous adaptive sys-
tems have not yet been sufficiently explored and
theoretically elaborated. As a consequence, robot
designers often opt for centralized solutions where
there is a microprocessor responsible for control-
ling the movement of all limbs and joints. Simply
applying methods from control engineering to ro-
bots that have to perform in the real world has not
worked well in practice: many humanoid robots,
for example, are still energetically inefficient and
lack adaptivity when confrontedwith situations that
animals cope with on a routine basis. An embodied
perspective, because it distributes control and pro-
cessing to all aspects of the agent (its central
nervous system, the material properties of its
musculoskeletal system, the sensor morphology,
and the interaction with the environment), provides
an alternative avenue for tackling the challenges
faced by robotics. The tasks performed by the
controller in the classical approach are nowpartially
taken over by morphology and materials in a pro-
cess of self-organization; for example, skin proper-
ties support the functionality of hands: Grasping a
glass with soft, compliant, slightly humid fingertips
is much easier than with thimbles, because the
deformation of the tissue on the fingertips, which is
entirely passive, increases surface contact and
friction. Clearly, the embodied view suggests that
the actual behavior emerges from the interaction
dynamics of agent and environment through a con-
tinuous and dynamic interplay of physical and
information processes (Fig. 1). Although impor-
tant insights can be gained from simulations,
most of this review is devoted to studies employ-
ing physically embodied robots; indeed, in spite
of recent advances in simulation technology, the
actual dynamics of the real world are still very
hard to simulate accurately (such as the interac-
tion of an agent’s body with sand or water).

Embedded Neural Models
Historical precursors of today’s bio-inspired ro-
bots were the mechanical tortoises built by Grey
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Walter in the 1940s; these machines displayed an
impressive behavioral repertoire based solely on
neurally inspired analog electronics. In the past
15 years or so, robots of all sorts have been used
to study and test models of natural neural
information processing [for recent surveys, see
(1, 30, 31)]. Bio-inspired neural modeling has
driven research on locomotion; for instance, to
understand legged underwater locomotion (15), to
study the switching between swimming and walk-
ing observed in salamanders (18) (Fig. 2A), or to
investigate adaptive dynamic walking on irregular
terrain (22). Much attention has also been devoted
to emulating navigation and orientation behavior.
Examples abound and include visual homing
inspired by how bees or wasps find their way back
to their nests (12), cricket phonotaxis [how female
crickets move toward the mating sounds of males
in highly rugged and noisy environments (32)], and
spatial memory formation by mod-
eling place fields and head-direction
cells which account for the sophis-
ticated navigational skills of rodents
(33). One of the important design
principles implicitly exploited in the
examples above is sensory-motor
coordination (34); that is, the mutual
coupling of sensing and acting. This
principle supports the generation of
information structure in sensory stim-
ulation: spatiotemporal correlations in
sensory input streams, redundancies be-
tween different perceptual modalities,
or regularities in sensory patterns that
are invariant with respect to changes
in illumination, size, or orientation.

The information-theoretic implica-
tions of embodiment are far-reaching.
First, the induced information struc-
ture represents redundancy across
sensory channels, which may, given
the typically staggering number of
possible states that the sensory input
can assume, substantially simplify per-
ception. Second, information structure
does not exist before the interaction
occurs but emerges only when the
embodied system interacts with its
surroundings. However, once such
structure has been induced, learning
can pick up on it by forming cross-
modal associations, so that next time
around, the pertinent information
structure is more easily reactivated,
and, for example, stimulation in one
sensor modality can be partially pre-
dicted from another one (for instance,
by looking at a glass we can partially
predict what it will feel like when we
grasp it). It follows that embodied
interaction lies at the root of learning
because it enables the creation of time-
locked correlations and the discovery

of regularities that transcend the individual sensory
modalities (4) as necessary for concept learning,
such as the grasping of a cup, which yields visual,
haptic, and proprioceptive sensory information.

Implications of Embodiment
In the examples discussed so far, the importance
of using robots lies mostly in the fact that the
neural models are embedded in an embodied sys-
tem equipped with sensors and actuators enabling
physical interaction with the environment. The
models are thus exposed to realistic sensory
stimulation, rather than the idealized one typically
used in simulation studies (Fig. 2B). Recently,
there has been a growing interest in a more inte-
grative study of biologically inspired systems, and
many of the implications of embodiment have
shifted toward center stage: exploitation of mor-
phology and materials, sensory-motor interaction

dynamics, and self-organization (or more pre-
cisely, self-stabilization, which is stabilizationwith-
out explicit feedback mechanisms; that is, without
measuring the disturbances or altering the system)
(3, 10, 17, 22, 35) (Fig. 3).

As an illustrative example, take legged lo-
comotion in insects. Insects possess dozens of
degrees of freedom that need to be coordinated
during walking or running, which is particularly
challenging when dealing with uneven surfaces.
It is plausible to assume that insects do not solve
the inverse kinematics problem for all the joints at
all times (a strategy often adopted in robotics, but
which though being computationally exact re-
quires high-bandwidth sensory feedback for fast
gaits). The solution to the control problem can be
found in the exploitation of embodiment and de-
centralization. If the insect is pushing back with
one leg, the joints of all the other legs that are on

the ground are moved in the “cor-
rect” direction, a movement that can
be detected by angle sensors in the
joints (11). This way, there is global
communication between the legs
that can be exploited for their co-
ordination, even though at the level
of the neural system no central con-
troller for the legs exists.

Another means to simplify the
control of dynamic locomotion is
through passive mechanisms alone.
For instance, the rapid adaptation to
small unpredictable bumps in the
ground is taken over by the passive
compliance of the insect’s muscle-
tendon system and the slack in its
joints (3, 14). Technically, it is
possible to realize this principle for
hexapod walkers using pneumatic
linear actuators (air muscles), where
the compliance is provided by com-
pressed air, enabling the robots to
move at impressive speeds even
over rough terrain (10) (Fig. 2C).
Similar feats have been achieved by
employing electrical motors cou-
pled to spring-damper systems in
the case of quadrupeds (17, 22).

These are all examples of what
one might call “intelligence by
mechanics” (35), which implies
that the intrinsic dynamics of the
nonlinear mechanics yield self-
stabilizing behavior (that is, robust-
ness with respect to perturbations
with minimum neural sensing). Para-
digmatic examples of self-stabilizing
systems are the passive dynamic
walkers: robots (or rather mechanical
structures without microprocessors
or motors) that walk down a slope
without control and actuation (2).
The walker’s morphology (center of

Fig. 1. Implications of embodiment (the interplay of information and physical
processes). Driven by motor commands, the musculoskeletal system (mechanical
system) of the agent acts on the external environment (task environment or
ecological niche). The action leads to rapidmechanical feedback characterized by
pressure on the bones, torques in the joints, and passive deformation of skin
tissue. In parallel, external stimuli (pressure, temperature, and electromagnetic
fields) and internal physical stimuli (forces and torques developed in the muscles
and joint-supporting ligaments, as well as accelerations) impinge on the sensory
receptors (sensory system). The patterns induced thus depend on the physical
characteristics and morphology of the sensory systems and on the motor
commands. Especially if the interaction is sensory-motor coordinated, as in
foveation, reaching, or grasping movements, information structure is generated.
The effect of the motor command strongly depends on the tunable
morphological and material properties of the musculoskeletal system, where
by tunable we mean that properties such as shape and compliance can be
changed dynamically: During the forward swing of the leg in walking, the
muscles should be largely passive, whereas when hitting the ground, high
stiffness is required, so that the materials can take over some of the adaptive
functionality on impact, such as the damped oscillation of the knee joint.
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mass, length of the limbs, and the shape of the
feet) and its materials are carefully designed so as
to exploit the physical constraints present in its
ecological niche (friction, gravity, and inclination
of the slope) for locomotion. Interestingly, to get
the robot to learn to walk on a level surface, one
can reuse the mechanical design obtained during
passive dynamic walking and endow it with ac-
tuators in the ankles or hips (Fig. 2D). The natural
dynamics of the body/environment system can
be used as a target for learning the control policy
of the actuators, and it is an “easy” one because

once the system is in the desired basin of
attraction, it is “pulled” into a quasiperiodic
limit cycle trajectory. In other words, the robot
learns to walk on flat ground within a relatively
short period of time. The theoretical import of
this case study lies in the tight coupling of em-
bodiment, self-organization, and learning.
Again, the ability to walk is not localized in
the controller but is fully distributed throughout
the agent and its dynamics; part of the control
task is “outsourced” to the physical dynamics of
the agent.

In all forms of locomotion, neural control can
be simplified through clevermorphological design
and use of functional materials. A case in point is
aquatic locomotion. It is known that fish, some am-
phibians, and reptiles swim by producing traveling
waves of neural activation transmitted along chains
of coupled oscillators located in the spinal cord
(36). The attempt to model and mimic the very
same mechanism has inspired a host of multi-
segmented undulatory robots such as fish, swim-
ming salamander, and snake robots (18, 19). The
key to their construction is the translation of neural

Fig. 2. Self-organization, dynamics, and materials in bio-inspired robotics. (A)
Smooth transition between swimming and walking (18). This amphibious
salamanderlike robot (~80 cm long) embeds a spinal cord model that explains
the ability of salamanders to switch between swimming and walking. The
locomotion model is built by extending a primitive neural circuit for swimming
by phylogenetically more recent limb oscillatory centers. (B) Rich sensory
stimulation through proper sensor morphology (21). This robot (~7 cm in
diameter) owes its sophisticated sensory capacities to the specific arrangement,
shape, andmaterial characteristics of its whiskers. Natural whiskers from rodents
(such as the ones used on this robot) are far superior to whiskers built from other
materials in terms of richness of the signals relayed to the neural system. (C)
Self-stabilizing rapid hexapod locomotion (10). This robot (~15 cm long) moves
with a bouncing gait, achieving rapid (over 4 body lengths per second)
locomotion. Its legs are built with compliant pneumatic actuators, which yield
self-stabilization through mechanical feedback. (D) Passive dynamics–based
walking (2). Designed to work on a slope as a dynamic walker, this robot (~45
cm tall) exploits dynamics and morphology (in particular, the shape and length
of the body and feet) to achieve stable walking. The robot’s natural dynamics
serves as the target dynamics for a reinforcement learningmechanism, enabling
the robot to quickly learn to walk on flat ground. (E) Self-stabilizing vertical
takeoff through materials and morphology (13). Inspired by flies, this ultralight
(60 mg, 3-cm wingspan) ornithopter (a device that flies by flapping its wings)
generates sufficient lift to take off vertically (power is supplied externally). A

large part of the control is delegated to the morphological and material
properties of the robot. Compliant structures are driven into resonance to
produce a large wing stroke, and flexible material is used in the wing hinges to
allow for passive rotations of the wings. (F) Agile wall-climbing through
materials (20). The bio-inspiration for this palm-sized robot is provided by the
gecko and its uncanny climbing talents. The robot’s tri-foot (three-footed
wheel) is equipped with a polymer dry adhesive material, which to some extent
has contact properties comparable to those of its biological analog. The robot
can flexibly navigate on smooth vertical and even inverted surfaces. (G)
Morphing through localized self-reconfiguration (7). This self-reconfigurable
robot is composed of active (actuated, black) and passive (nonactuated, white)
cubic modules (~400 g, ~60 to 65 mm side length). The modules connect to
each other through hooks, which enables the robot to change its morphology
in a large number of ways. The picture shows the metamorphosis from a four-
legged (quadruped) structure to a linear (snakelike) structure. (H) Global
movement through local interaction dynamics (9). The individual wheel-like
modules (~10 cm in diameter) constituting this robot are equipped with
spokelike parts driven by linear actuators. The wheels lie horizontally on the
ground and attach to neighboring modules by Velcro. Although no module
can move on its own, by using neural oscillators as drivers for the actuators
and through the physical coupling between the units, a coordinated global
wave of activation can be induced in clusters of more than 30 modules, which
leads to forward movement, even though there is no global control.
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activity into torques propagating through the indi-
vidual segments, so that the resulting reactive forces
lead to forward movement. An alternative strategy
for understanding underwater locomotion attempts
to exploit morphology and bio-inspired materials,
as demonstrated by a recently built fishlike robot
that can swim by simply moving the tail back and
forth (17). The “trick” that gives rise to lifelike
movements in such a strongly underactuated sys-
tem is the right choice of materials in the caudal
fin; materials that allow the “tuning” of the fin
shape in a way that seems to optimally distribute
the hydrodynamic forces over the fish’s body dur-
ing propulsion andmaneuvering (17). The tuning is
reminiscent of the way in which biological ray-
finned fish actively control the curvature of their fins
to optimize the transmission of locomotor forces to
the aquatic environment, maximizing propulsion
while minimizing energy consumption (37).

Flying is different from swimming because in
addition to the thrust required to move forward, it
is necessary to produce sufficient lift to stay in the
air (3). Despite the impressive mastery of flight
by today’s technologies, constructing bio-inspired
devices capable of nontethered (free) flight re-
mains a challenge. The performance gap between
mechanical flapping devices (ornithopters) and
their natural analogs is still large (20). As for
swimming, one potential avenue might be the ex-
ploitation of the morphology of bio-inspired mate-
rials (13). Take an insect wing during hovering
flight. Its material properties in terms of resilience,
stiffness, and deformability are essential to gener-
ate adequate lift in the absence of any forward
velocity. For instance, the shape of the wing
changes greatly when moving back and forth
through the stroke plane (3). Although such change
in shape could in principle be actively controlled, it

is more efficient and faster if the intrinsic material
characteristics are exploited and control is out-
sourced to the morphological and material prop-
erties of the wing. An additional advantage of
this solution is that the wings can be made much
lighter because less actuation is required (Fig. 2E).

Finally, materials can also be exploited for
climbing, as beautifully showcased by the un-
canny climbing skills of geckos, which can dash
up smooth walls and walk across ceilings with
great ease. The geckos owe their sticky feet to the
structural properties of their toes, which are cov-
ered with millions of nanoscale hairlike stalks
branching into hundreds of tiny endings (38). The
use of micropatterned fibrillar dry adhesives
inspired by gecko foot morphology is bound to
lead to impressive advances in the construction of
robots that can climb vertical or inverted surfaces
of all kinds (20) (Fig. 2F and supporting online
material).

Scaling Up Complexity
Over the past decade or so, with the advent of
aging societies and the concurrent advancement
of technology, substantial research efforts have
been directed toward engineering robots capable
of performing a large variety of tasks such as
assisting the elderly (by ensuring their quality of
life and health care), doing household chores
(washing the dishes, cooking dinner, and
ironing), helping workers on assembly lines,
surveillance, and entertainment. Much progress
has been made in the study of basic abilities such
as locomotion (2, 25); manipulation (39);
understanding the surrounding environment,
including the recognition of objects, people, and
other robots; and social interaction (23, 40, 41).
Because such robots need to operate in environ-
ments built for humans, the morphology of
choice is humanoid or anthropomorphic.

Humanoid robots often have highly sophis-
ticated sensory-motor systems (24, 25), which
implies that they are confronted with the hard
problem of processing potentially large amounts
of information in real time. Although much re-
search has been conducted on learning in the
real world, especially in the fields of artificial
intelligence and cognitive robotics (42), the tasks
and environments, for the most part, have been
of relatively limited complexity. One potential
reason might be that the size of the search spaces
for learning optimal decision policies in realistic
scenarios makes the direct transfer of traditional
algorithm-based machine-learning techniques to
robots not straightforward; more so, if such robots
need to operate in real time. Again, exploiting
the agent/environment interaction might provide
at least part of the solution. As demonstrated by
experiments with robots (4), the notion of em-
bodiment actively supports and promotes intelli-
gent information processing, greatly simplifying
the challenge posed by the need to process large
amounts of sensory information (Fig. 4). Consider

Fig. 3. Self-stabilization. (A) Picture of a two-dimensional underactuated monoped hopping robot
attached to a central rod with a rotational joint (courtesy of A. Seyfarth and A. Karguth). (B) A
schematic representation of the hopping robot in the different phases of locomotion: flight,
touchdown (TD) [with angle of attack (AOA)], and takeoff (TO). Only the joint depicted by the black
circle (hip joint) is actuated, the knee (white circle) is passive, and the lower limb is attached to the
upper limb with a simple spring. (C) Output of a simulation of the robot. The upper part of the
panel shows the trajectory of the model over time as a sequence of stick figures; in the lower part,
the angle of attack (the angle at which the leg hits the ground) is plotted. The model exhibits a
stable hopping gait with a periodic hip motor oscillation, as indicated by the constant AOA at every
step in the left side of the panel. At distance d = 0 m, there is a step in the ground that disturbs the
robot’s movement but to which the robot adapts without the need for any changes in the control.
This purely mechanical phenomenon is called self-stabilization. [Figure adapted from (35)]
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a loosely swinging arm: Although the trajectory of
the hand is highly complex, the neural control for
it is comparatively simple, as coordination is
achieved primarily through peripheral mechanical
feedback loops and the biomechanical constraints
provided by the musculoskeletal system. The be-
havior that emerges from the synergistic coupling
of the arm’smorphology, its natural dynamics, and
the coupling with the environment yields an ef-
fective exploration strategy because it increases
the probability that something interesting happens:
that the hand encounters and grasps an object and
brings it into the visual field or into the mouth.

This way, sensory stimulation is not only induced
but it also tends to contain information structure,
which then strongly simplifies perception and
learning (Fig. 4).

Research on bio-inspired cognitive robots that
has received considerable attention is imitation
learning (23, 24), in which robots learn from hu-
mans or other robots. This idea has a special
appeal because imitation is a powerful mecha-
nism for reducing the search spaces associated
with learning in the real world, which might
eventually lead to robots that will need only a
minimal amount of programming (40). The

hope that the imitation problem can soon be
resolved has been fueled by the discovery in the
mid-1990s of the mirror neuron system (a net-
work of brain areas in the premotor and parietal
cortices activated by both recognition and
production of object-oriented movements) and
its purported link to imitation (43). An important
challenge in robotic imitation learning is that
robots, in spite of their superficial resemblance,
have entirely different morphologies from hu-
mans. A similar problem is faced by babies trying
to imitate adults. Although no generally accepted
answer seems to be in sight, it is clear that a
biomimetic solution has to take into account the
morphological and material constraints to generate
the proper imitative dynamics (24).

Designing Morphologies
Working in parallel with sensory-motor coordi-
nation, the specific body morphology (as well as
the materials employed) is crucial in shaping the
resulting information structure (2, 4). In other
words, the design of the controller and that of the
morphology are inseparable from each other,
because both affect information processing. Yet,
although some progress has been made to op-
timize the design of robot controllers, robot mor-
phology still largely remains a matter of heuristics.
In evolutionary robotics, the most widespread ap-
proach is to start with a fixed morphology and
evolve the robot controller, typically a neural
network (44). In nature, however, there is never an
“empty” organism, but brain (controller) and body
(morphology) coevolve. By subjecting the mor-
phology to evolutionary optimization as well, one
can not only more fully exploit its power but also
make the approach more plausible from a bio-
logical perspective. Technically, the robot’s mor-
phology is either encoded in the artificial genome
in terms of parameters standing for length, diam-
eter, types of joints, and material properties of the
basic building blocks that can be used by evolution
to build organisms (45), or results from a process of
ontogenetic development (46) of body and brain
based onmodels of genetic regulatory networks (1).

If it is indeed the case, as we have argued
earlier, that much of the functionality of a robot is
due to its particular morphology, then it would be
desirable to have robots that, depending on the
task at hand, can alter their shape. The term
“morphofunctional machines” has been coined to
designate devices that can change their function-
ality not only by a change in control but by
modifying their morphology (47). Somemodular
self-reconfigurable robots can “morph,” for exam-
ple, from a snakelike structure into a quadruped
walker or vice versa (7, 48) (Fig. 2G), which can
be very helpful if the robot needs to move through
a narrow space to accomplish its task. Incorporat-
ing change of shape into the design considerations
is crucial and bears enormous potential for
increased adaptivity, versatility, and resilience, an
idea that has not been substantially exploited yet.

Fig. 4. Information self-structuring. (A) Picture of the robot, a small humanoid with a pan-tilt head
equipped with a charge-coupled device camera [adapted from (4)]. In this experiment, there are two
conditions: foveation (fov), where the camera in the robot head tracks an orange ball that moves in the
robot’s visual field (sensory-motor coupling is undisrupted), and random (rnd), where the movement of
the camera is unrelated to the movement of the ball (sensory-motor coupling is disrupted). (B) Schematic
representation of the experimental setup. The ball is connected to the tip of the most distal link of a robot
arm. The arm’s movement is preprogrammed and is independent of the head’s movement. The movement
of the ball results in a displacement of the ball relative to the head and leads to physical stimulation in
the head-mounted camera. Sensory feedback is induced, entailing motor commands from the controller.
The motor commands entail a movement of the head, which in turn leads to physical stimulation of the
camera, thereby inducing information structure. (C) Various measures to capture information structure:
entropy (the amount of disorder in the system), mutual information (the extent to which the activity of
one pixel can be predicted from the combined activities of neighboring pixels), integration (a measure of
global coherence), and complexity (a measure that captures global coherence and local variation). The
measures are applied to the camera image in the case of the foveation condition (top) and random
condition (bottom). As can be seen, there is more information structure in the case of the foveation
condition for all measures; for example, the dark region in the center of the entropy panel indicates that
entropy is clearly diminished in the center of the visual field, (disorder has been reduced, or in other
words, information structure has been induced), which is due to foveation being a sensory-motor
coordinated behavior. This example illustrates information self-structuring because through its behavior,
the robot is structuring its own sensory input. [Adapted from (4)]
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To date, much of the work in modular robotics
is based on macroscopic modules (with sizes
ranging from centimeters to tens of centimeters)
composed ofmicroprocessors, communication links,
sensors, actuators, and mechanical or magnetic
docking interfaces (48). The size of the modules
imposes severe constraints on the kinds of shapes
that can be built and the functionality that can be
achieved. At micrometer scales, these constraints
are less critical, but conventional robotics technol-
ogy can no longer be applied; it is thus essential to
rely on processes of self-assembly—the autono-
mous organization of patterns or structures with
little (or ideally, without) human intervention (49).
The combination of self-assembly with modular
robotics might offer an important strategy for fab-
ricating arbitrary morphologies with specific
material properties and for engineering robots dis-
playing truly emergent functionalities (Fig. 2H).

Rather than studying how individual modules
aggregate into an organism to perform some
functionality, collective robotics investigates how
groups of robots cooperate to accomplish a par-
ticular task (50). Nature provides a wealth of
collective phenomena that emerge through pro-
cesses of self-organization from the local inter-
action of individual agents (the formation of
trails and bridges; sorting, flocking and school-
ing behaviors; communication; and dominance
interactions), which have provided much inspi-
ration for robotics. With some notable exceptions
(50, 51), much of the research in collective
robotics is still conducted in simulation. More-
over, morphological and material considerations
are typically not taken into account.

Self-Replication
The ultimate challenge, self-replicating robots
(machines that can autonomously construct a
functional copy of themselves), has a lot of
romantic appeal but conjures up images of a
runaway technological cataclysm. Nonetheless,
many approaches to self-replication have been
suggested since John von Neumann’s seminal
work on self-replicating cellular automata almost
60 years ago. Physical self-replicating machines
have recently been realized with manually sup-
plied 10-cm cubes that can connect to form
arbitrary arrangements (8), as well as with elec-
tromechanical units randomly floating on an air
table, which first grow into a mechanical five-bit
string and then self-replicate (6). Self-replication
is not yet a well-defined subject and different
notions of the term “self-replication” exist. Al-
though von Neumann’s cellular automaton con-
sisted of more than 150,000 cells, each capable
of assuming 29 different states, more recent sys-
tems contain just a small number of cells, with
fewer states and little reliance on self-organization.
It has thus been hypothesized that self-replication
is not a clear-cut binary property but a con-
tinuous one (8). Moreover, we might be more
inclined to accept a machine as self-reproducing

if it not merely recruits existing modules but as-
sembles them from materials available in its sur-
rounding environment. Although the latter is the
goal of some projects (52), actual self-reproduction
(as observed in biological life) in artificially built
systems still needs to be achieved.

Conclusion
Recent work on bio-inspired robots suggests that
self-organization and embodiment are power-
ful concepts in the development of adaptive
autonomous systems. Exploiting the dynamics
provided by materials and morphological prop-
erties as well as the interaction between phys-
ical and information processes promises to
extend the capabilities of established control-
based robot design methodologies. Although
bridging the gap between artificial and natural
systems will require addressing many concep-
tual and technological challenges, we believe
that a first important step is the abstraction of a
set of design principles. Such principles will not
only yield a deeper understanding of biological
structures and processes but will also guide the
construction of novel types of robots of unprec-
edented diversity and behavioral characteristics.
Exciting times are ahead of us.
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