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Abstract.
BACKGROUND: The use of robotic technology for neurorehabilitative applications has become increasingly important for
adults and children with different motor impairments.
OBJECTIVE: The aim of this study was to evaluate the technical feasibility and usability of a new interactive leg-press training
robot that was developed to train leg muscle strength and control, suitable for children with neuromuscular impairments.
METHODS: An interactive robotic training system was designed and constructed with various control strategies, actuators and
force/position sensors to enable the performance of different training modes (passive, active resistance, and exergames). Five
paediatric patients, aged between 7 and 16 years (one girl, age 13.0 ± 3.7 years, [mean ± SD]), with different neuromuscular
impairments were recruited to participate in this study. Patients evaluated the device based on a user satisfaction questionnaire
and Visual Analog Scale (VAS) scores, and therapists evaluated the device with the modified System Usability Scale (SUS).
RESULTS: One patient could not perform the training session because of his small knee range of motion. Visual Analog Scale
scores were given by the 4 patients who performed the training sessions. All the patients adjudged the training with the interactive
device as satisfactory. The average SUS score given by the therapists was 61.2 ± 18.4.
CONCLUSION: This study proposed an interactive lower limb training device for children with different neuromuscular
impairments. The device is deemed feasible for paediatric rehabilitation applications, both in terms of technical feasibility and
usability acceptance. Both patients and therapists provided positive feedback regarding the training with the device.
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1. Introduction

The use of robotic technology for neurorehabilitation has become increasingly important for both
adults and children with different motor impairments [1–4]. Rehabilitation robots have been introduced
in the clinical rehabilitation environment tocomplement conventional therapy and improve therapeutic
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outcomes, as they can enhance the quantity and the quality of the rehabilitation dose, by increasing the
training duration and the number of repetitions and providing more accurate repetition trajectories [5,6].

Several robotic systems are available on the market for paediatric neurorehabilitation [7,8]. Generally,
these systems were primarily developed for adult patients, and introduced to the paediatric field after
technological adaptations [5,9,10]. For example, after the positive outcomes of the gait trainer Loko-
mat (Hocoma AG, Switzerland) in adults, a paediatric version has been developed [11]. The paediatric
Lokomat is a gait trainer robotic platform, which consists of a body-weight support system, and two leg
exoskeletons adaptable to the patient’s anthropometry and synchronized with a treadmill. The therapy
principle of the Lokomat is based on repetitive gait movements with a variety of control strategies depend-
ing the rehabilitation phase and patient’s participation. Training with the Lokomat showed improvements
in standing and walking ability in children with cerebral palsy [12,13].

Another robotic system for paediatric rehabilitation is the gait trainer GT-1 (RehaStim, Germany)
that aims to enhance gait ability by providing repetitive movements [14]. The GT-1 is an end-effector
rehabilitation robot, where the patient’s feet are positioned on programmable footplates that are able
to simulate various walking scenarios by generating different movement patterns. A study including
18 children with cerebral palsy showed that a 2-week training programme with the GT-1 could induce
significant improvements in walking, hip kinematics, speed and step length compared to the control
group [14].

The ability of the robotic system to provide different training modes depending on the patient’s recovery
stage plays an important role in the efficiency of the therapy [9,15]. Normally, rehabilitation recovery
is divided into three phases: acute, subacute, and chronic [16]. In the acute or early recovery stage,
passive training is often recommended, where the patient’s limb is passively guided to track a predefined
trajectory through continuous position control [17,18]. This promotes limb motor function, maintains
range of motion and reduces muscle atrophy, but lacks patient’s motivation [19,20]. In the subacute
phase of recovery, where the patient is able to provide sufficient forces for the proposed training, it is
recommended that the patient performs active training or active resistive training [19,21]. During active
training the robot provides resistive forces, while the patient is performing task-specific or repetitive
movements [22]. This makes the exercise more challenging and increases muscle strength [20]. Some
studies encouraged the combination of both passive and active training modes, and showed improvements
in motor performance in children with neuromuscular impairments [23,24]. In the chronic recovery
phase, robotic systems assist and support the patient’s balance during training and record the data for
assessment [15,20].

The active participation of the patient and the interaction with the rehabilitation process is very
important and has been proven to enhance the therapeutic outcomes [25,26]. Especially in children and
adolescents, the introduction of games and virtual reality into the rehabilitation therapy has a major
influence on the treatment, as it motivates, challenges and makes the children interact in real time with
the virtual environment, thus the duration and intensity of the training can be increased [5,9,23,27]. The
rehabilitation robotic system presented in this study allows interaction between the patient and the device
by using real-time interactive training modes and virtual environments, thus increasing the patient’s active
participation and motivation. The developed interactive leg press device can operate in three different
modes: (i) passive training, (ii) active resistive training and (iii) active resistive training complemented
with exergames. These interactive modes are based on real-time biofeedback provided from force and
angle sensors, which allows on-line monitoring of performance data, and off-line records for further
evaluation and analysis.

For both children and adults, the leg-press form of exercise has been proven to have several benefits for
sport conditioning and neuromuscular rehabilitation applications [28–31], and several leg-press training
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Table 1
Patients’ characteristics

Patients Gender Age (yrs) Body mass (kg) Height (cm) Diagnosis
P01 m 12.5 38.0 144 Bilateral spastic CP (after knee operation)
P02 m 14.8 65.5 165 Guillain-Barré-Syndrome
P03 m 16.3 70.3 169 Bilateral ataxic CP
P04 f 16.9 54.5 163 Severe traumatic brain injury
P05 m 7.8 26.2 132 Polytrauma after traffic accident with several surgeries

Mean ± SD 13.7 ± 3.7 50.9 ± 18.6 155 ± 16
Abbreviations: CP: cerebral palsy, SD: standard deviation.

devices were developed and introduced to the market, such as the Allegro [32] and LegoPress [33]. These
devices were designed mainly for adult patients’ rehabilitation and sport training applications, whereas the
robotic system proposed in this study targets the paediatric population in term of size, training intensity
and training modes.

2. Objective

The aim of this study was to evaluate the technical feasibility and usability of a new interactive leg-press
training robot suitable for children with neuromuscular impairments. The usability analysis considered
user acceptability for both patients and therapists. The work presented here is a preliminary clinical
assessment of usability. A full clinical study is required to generate clinical evidence of efficacy of the
treatment.

3. Methods

3.1. Patients

The Ethics Review Board of the Canton of Zürrich in Switzerland reviewed the study protocol and
decided by means of a jurisdictional inquiry that this study did not fall under the Human Research Act (Nr.
Req-2018-00586). Written informed consent was obtained from the legal guardians of all the participating
children prior to participation. Patients aged 14 and above provided written informed consent while
younger ones provided oral agreement. The measurements were performed at a paediatric rehabilitation
centre in Switzerland (University Children’s Hospital Zürrich, Rehabilitation Centre in Affoltern am
Albis).

The inclusion criteria for recruitment were: (i) aged between 6 and 18 years, (ii) neuromuscular
impairments affecting at least one lower-limb, (iii) ability to understand the tasks, and (iv) ability to
answer the user satisfaction questionnaire. Exclusion criteria were: (i) orthopaedic surgery in the last 6
months, (ii) unhealed skin lesions in the lower limbs, and (iii) severe cognitive impairments (Table 1).

3.2. Training device

3.2.1. Specifications and design
The robotic system developed and evaluated in this project is an interactive leg press training device,

designed for children with neuromuscular impairments to train and strengthen their lower limbs. The
interactive leg press device comprises an adjustable seat module, independent footplates attached via
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Fig. 1. Training device.

lever mechanisms to two pneumatic linear actuators (cylinders), and a visual feedback positioned in front
of the user (Fig. 1a).

The seat module consists of a tuning car seat (Sparco S.P.A, Italy) mounted on a support mechanism
which can move forwards/backwards and up/down to suit the anthropometrics of children and adolescents
with different bodysizes. Prior to each training session, therapists individually adjusted the distance
between the seat and the footplates for each patient. The seat provides a tilt mechanism for the back
support and a mechanism to adjust the sagittal position. Standard office chair hand rails were mounted to
enable the child to hold on for a safe and comfortable feeling.

The training device is based on linear pneumatic actuators (DSBC-U-63-500-PPSA-N3, Festo AG &
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Fig. 2. Patient 5 playing the Space Shooter exergame.

Co, Germany) containing cylinders that use compressed air power to provide a linear movement. The
actuators used for this project are double acting cylinders (push and pull directions) and can provide
forces of 1682 N with compressed air of 6 bar. The idea behind using double acting cylinders is to control
the movement and the force in the pedal in both directions, which is needed mainly for position control
where the pedal is required to follow a trajectory (passive training). Pressure and direction of the cylinders
are commanded by proportional and directional valves, which are interfaced to a data acquisition module
(DAQ module) and controlled via USB cable by a systems engineering software (LabVIEW, National
Instruments, Austin, US) (Fig. 1b).

To measure the forces and positions the device has two force sensors and two angle sensors. The
force sensors (KD140.1kN, Transmetra GmbH, Switzerland, accuracy: ± 0.1%) are mounted behind
the footplates to directly measure the forces applied by the user’s feet. They are capable of measuring
both negative and positive forces. The angle sensors (MDFM 20U9405/C360, Baumer AG, Switzerland,
accuracy: ± 0.25%) are magnetic sensors mounted and driven by a parallelogram mechanism to measure
and record the absolute angle of the pedals around the rotation axis.

The visual feedback screen is mounted in front of the user, and displays the performance variables in
real-time (forces and angles) and specific training scenarios (e.g. games, (Fig. 2)). Children were able
to visualize their dynamic behaviour and asked to adapt their volitional performance to follow a target
signal. This task requires and trains coordination and adequate levels of leg strength.

For safety, the device has an emergency stop button and an adjustable mechanical brake, which keeps
the pedals within the desired maximal range of motion. Additionally, to ensure patient safety, therapists
were able to define a maximal force value, where the device stops the actuators if this value is reached.

3.2.2. Control architecture and training modes
The training robotic system presented in this study aims to facilitate rehabilitation exercises for children

with different neuromuscular diseases. The device can operate in three different training modes:
1. Passive training: the device operates in position control mode, where it imposes a predefined

trajectory on the limb, while the patient moves passively with the device. The main aim of this
mode is to increase range of motion and decrease knee spasticity. It can also be used for patients



1188 F. Chrif et al. / Usability evaluation of an interactive leg press training robot for children

Fig. 3. Position/force control loop.

to familiarize with the device. It is essential for early rehabilitation phases but lacks scenarios to
increase the patient’s motivation.

2. Active resistance training: The device operates in force control mode. The robot provides resistive
forces against the limb while the patient is asked to perform specific tasks. The aim of this training
mode is to increase muscle strength and coordination. It is suitable for patients with advanced
recovery level, and it makes the training more challenging.

3. Exergames: The device operates similarly as in active resistance, while the patient is controlling
games with the legs. The aim of this training mode is to motivate the patient and increase training
duration and challenges. It also distracts the patients from the movement itself (external focus of
attention), which has been proven to be beneficial for motor learning [34,35].

The principal task of the position feedback control system is to impose a precise predefined trajectory
on the limb. This is implemented using a closed-loop position controller (Fig. 3). The position controller
compares the predefined target angle and the actual angle measured by the angle sensors, and continuously
computes and transmits a target air pressure to the proportional valve. The proportional valve has an
internal pressure controller which keeps the level of air pressure in the cylinder close to the target pressure.

The force feedback control system aims to maintain a target force at the interaction point between the
patient’s limb and the pedal (Fig. 3). Similar to the position control system, the force control system
is a closed-loop controller that transmits a target air pressure to the proportional valve after comparing
the target predefined force and the actual force measured by the sensors behind the footplates. The
internal pressure controller supplies the cylinder with compressed air, and generates the forces on the
footplates. For both position and force controllers, the left and right pedals are separately controlled, and
for simplicity we describe only a single side here, while in practice the implementation is duplicated.

The relevant performance signals (force, angle, pressure) are monitored and recorded during real-
time feedback operations using data acquisition and signal procession software (LabView, National
Instruments). Following the real-time controller tests, the signals are processed and evaluated off-line
using Matlab software (Mathworks Inc., USA).

3.3. Games

To offer the patient a playful training environment, two different exergames have been developed: Space
Shooter and Ping-Pong. The games run on a cross-platform game engine (Unity3D, Unity Technologies
ApS, USA), while the training device is set in the active resistive training mode (force controller). Both
the Space Shooter and Ping-Pong games are controlled using the angle sensors, which are interfaced to
an open-source micro-controller board (Arduino Uno, Arduino S.r.l., Italy). The communication between
the micro-controller board and the PC is done via USB.
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Table 2
Therapists’ characteristics

Therapists Gender Age
(yrs) Profession Working experience

(yrs)
Working experience
with children (yrs)

T01 m 29 Sport scientist 7 3.5
T02 m 24 Health scientist 0.5 0.5
T03 m 28 PhD student/Physical therapist 2.5 2.5
T04 f 23 Sport therapist 0 0
T05 m 45 Scientist/Physical therapist 23 8
T06 f 29 Physical therapist 6 3
T07 f 22 Sport therapist 0.5 0.5
T08 f 35 Human movement scientist 11 10
T09 f 29 Physical therapist 5 4.5

During the Space Shooter exergame, the patient was asked to control a spacecraft in 2D and to avoid
and shoot falling stones. The position and direction of the spacecraft is defined by the difference between
the right and left pedal angles, thus the player can move the spacecraft to the left by extending the left leg,
and to the right by extending the right leg. The player scores 10 points for each destroyed stone. To change
the difficulty, the shooting frequency and the number and speed of the falling stones can be changed in the
external software configuration (Unity3D). This game focuses on improving the coordination accuracy
and speed of muscle activation of the lower limbs.

The Ping-Pong exergame is adapted from the classical ping-pong arcade video game. Unlike the
classical version of Ping-Pong which can be performed by two players, the exergame used for this training
device is an endless game and can be played by one user: the patient is asked to control the two paddles
and keep the ball bouncing between the paddles without touching the side walls. The patient controls the
position of the paddles separately, where the left leg controls the left paddle and the right leg controls the
right paddle. Extending the leg moves the paddle to the top, while flexing moves them down. Positive
points are add to the score when the ball touches the paddles, while points are deducted when it touches
the side walls. The difficulty of the game can be changed by setting the speed of the bouncing ball.
Unlike the Space Shooter exergame, this game requires selectivity of right and left legs, and focuses on
improving coordination and speed of the limbs.

3.4. Test procedure

Usability evaluation of the training device involved both paediatric patients and therapists (Tables 1
and 2). Patients performed one training session on the therapy device under the supervision of two
therapists (therapists changed for each patient). The therapists had never used the device before and
received an introduction to the device prior to each session, before they were instructed to implement the
different training conditions using a check-list. Each session lasted between 40 and 45 min including the
calibration setup, the three training conditions (passive, active, and exergames modes), and answering the
user satisfaction questionnaires.

First, the therapist received an easy-to-understand introduction to the device and the training that the
patient was going to perform. After getting agreement from the patient, and ensuring that the patient had
no musculoskeletal complaints or discomfort, the patient was installed on the seat module and his/her feet
were fixed on the footplates. Therapists manually adjusted the seat module position depending on the
patient’s body-size and defined the maximal range of motion of the patient’s legs by placing the patient’s
feet on the pedal and manually pushing the pedal to the maximal knee angle. Based on this calibration,
the robotic system saved this data and automatically generated a suitable target position for each patient.
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Target force was determined manually on the software: therapists increased the forces applied by the
footplates and asked the patients to move the pedals. Therefore therapists defined the appropriate target
force for each patient. After the device software and hardware calibrations, the formal test session was
conducted as follows:

1. Passive training: the patient first performed the passive training mode, where he/she was asked to sit
passively on the device. Predefined trajectories (viz. sinusoidal and sawtooth signals) were imposed
on the limbs. Therapeutically, this mode could be used for mobilization of the leg joints.

2. Active resistance training: the patient was asked to follow the same signals as he/she performed in
passive training, with resistive forces applied by the footplates. The therapists repeated the training
several times with different target signals and with different forces. This mode was designed to train
strength, as well as timely coordination and adequate levels of leg strength.

3. Exergames: the patient was asked to play the exergames as described above, while the therapist
could vary the forces and the game setting for difficulty. Therapeutically, this enabled training
strength and coordination in a playful environment.

After performing the three training modes, the patients were asked to evaluate the training session
and device with a user satisfaction questionnaire based on a smiley system and Visual Analog Scale
(VAS). Additional feedback from the therapists was provided with the modified System Usability Scale
(SUS) [36].

3.5. Outcome measures

3.5.1. User satisfaction
User satisfaction was evaluated with questionnaires for each patient and therapist. For patients, the user

satisfaction evaluation considered device usability, training intensity, motivation, and general opinion.
Patients answered five questions on a Visual Analog Scale (VAS), where the score was provided on a
100 mm long line. The most positive answer was always on the right side of the line (100 mm, VAS score:
100) and the most negative answer was always on the left side of the line (0 mm, VAS score: 0). The score
interpretation of each question was done based on the approach of Huijgen et al. [37] where the scale was
classified into three categories: not-satisfied for those with a score equal to or less than 30; average score
for those with a score between 31 and 69; and satisfied for those with a score equal to or higher than 70.

Therapists provided additional feedback and answered user satisfaction questionnaires with the modified
SUS. The questionnaire consists of ten questions about device usability and software manipulation, in
addition to a question about the general impression about the device. The SUS score can range from 0
to 100 and gives clear and quantified idea about the usability and improvements needed [36]. Based on
the literature, a score of 68 is considered as the average. Linked to the SUS, therapists were asked to
provide any additional notes or comments. The results obtained from patient/therapist user satisfaction
and additional comments are intended be taken into consideration in further device improvements.

To avoid bias in both SUS and VAS scoring, therapists were asked to answer the SUS questionnaire
individually. The questions were formulated following the literature and using unbiased wording, structure
and styling [38]. Regarding the patient satisfaction questionnaire (VAS), therapists were asked to help the
children to understand and communicate the questions in a clear, unbiased and neutral manner.

3.5.2. Performance parameters
The training device monitors and records quantitative performance data automatically during the

training sessions. Individual performance data included forces applied on the footplates, positions of the
feet and air pressure in the actuators. The data are recorded in real-time using the engineering software
LabView, and exported off-line to Matlab, where analytical evaluation is carried out for each patient.
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Table 3
Patients’ user satisfaction

Questions (n = 4 patients) Min Max Mean ± SD Answers in
VAS category

6 30 31–69 > 70
1. How interesting was the training with the device? 70 90 77.5 ± 9.6 0 0 4
2. Did you feel discomfort or pain during the training? 10 100 72.5 ± 42.7 1 0 3
3. Was the training intensity appropriate? 20 100 62.5 ± 35 1 1 2
4. Would you like to continue with such training? 80 100 92.5 ± 9.6 0 0 4
5. What is your general impression of the System? 70 90 80 ± 8.2 0 0 4

Abbreviations: Min: minimum, Max: maximum, SD: standard deviation. Scale: 0 = negative end, 100 = positive
end. VAS score categories: 6 30: not-satisfied, 31–69: average, > 70: satisfied.

4. Results

Five paediatric patients with neuromuscular impairments and nine therapists participated in this study.
The patients were aged between 7 and 16 years (one girl, age 13.0 ± 3.7 years [mean ± SD]) and were
diagnosed with different neuromuscular impairments. One patient could not perform the training session
(Patient 1) because of his relatively small knee range of motion and pain due to knee operation. Thus he
was able to bend his knee for a small angle only, and could not continue the training session.

4.1. User satisfaction

VAS scores given by the four patients who performed the training sessions are presented in Table 3. All
the patients adjudged the training with the interactive device to be as satisfactory (VAS of question 1 >
70). Only one patients reported pain or discomfort during the training and all the patient reported that
they would like to continue using the training device (VAS of question 4 > 70). The SUS score given by
the therapists was 61.2 ± 18.4.

4.2. Performance parameters

Individual performance parameters during the three training modes were recorded. For illustration,
original data records for a single patient during the three training modes are presented in Figs 4 and 5.
These figures show representative data from one participant; the performance of other participants was
similar.

1. Passive training: the patients were asked to sit passively while the device imposed predefined
trajectories (Fig. 4).

2. Active resistance training: patients were asked to follow target position profiles, while the device
was applying resistive forces on the footplates. All patients could understand the task and performed
the training with no untoward events (Fig. 5).

3. Exergames: the patients played two games, while the device was operating in active resistance mode.
All patients could understand the games, and high motivation and interaction could be observed.

5. Discussion

The aim of this study was to evaluate the technical feasibility and usability of a new interactive
leg-press training robot suitable for children with neuromuscular impairments. The usability analysis
considered user acceptability for both patients and therapists. This preliminary evaluation involved five
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Fig. 4. Original data record from patient 3 during passive training mode. The patient was asked to sit passively while the device
was imposing predefined trajectories (position control mode).

paediatric patients with different neuromuscular impairments, and nine therapists specialised in paediatric
neurorehabilitation.

The main results showed that the device is feasible for paediatric rehabilitation applications, both in
terms of technical implementability and usability acceptance. The developed training device is based on
pneumatic actuators (cylinders), where sufficient air pressure is needed. Compressed air was supplied
using a portable single-stage compressor. Employment of pneumatic cylinders could contributed to a
simple pedal mechanism arrangement and compact design, and allowed the implementation of different
control strategies. Force and position controller designs were done based on a simple plant model, and
on proportional valve internal pressure controllers. Force and angle sensors enabled monitoring and
recording the users’ dynamic behaviour and gave quantitative measures of the training. This can have
a major importance for therapists to accurately plan and analyse the rehabilitation progress of their
patients by monitoring the improvement in deviation between target and measured values. Despite this
simple design, the controllers demonstrated accuracy and robustness for different training modes, and
the actuators showed a high degree of controllability providing forces that are suitable for paediatric
rehabilitation purposes.
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Fig. 5. Original data record from patient 3 during the active resistance training mode. The patient was asked to follow target
position profiles, while the device was applying resistive forces to the footplates (force control mode).

In general, both patients and therapists were interested in and satisfied with the system. The patients’
average VAS scores and therapists’ SUS score, demonstrated that patients and the therapists rated the
device and its usability as highly acceptable. Only one patient (Patient 3) rated the question “Was the
training intensity appropriate?” into “not-satisfactory”, where he commented that the training duration
was too short. The total test duration was 45 min including the calibration, setting changes and the three
training modes. The calibration is needed only once in the first training session, and the passive training
mode is needed only for familiarisation and for severely impaired patients. We believe that the duration
and intensity, including active training and exergames, would be appropriate for formal therapeutic
training. One patient reported pain or discomfort during the training, due to inaccuracy in the position
controller strategy during the passive training mode. This patient experienced some pain on the knee level
during the first training phase (passive training mode), due to a prior knee operation. Better selectivity of
patients and improvements in training introduction are warranted.

Therapists assessed the device and its usability using SUS (System Usability Scale [36]) and an
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additional detailed feedback. The SUS score obtained from nine therapists was 61.2 ± 18.4, which is
considered below the average (score of 68) [38]. However, eight therapists reported the overall device
impression as “Good” or “Excellent”, and two therapist reported as “Neutral”. Linked to the SUS,
therapists gave notes and comments on specific issues in hard- and software that could be changed to
improve the device and its usability. The main comment was the need to improve access to the device,
by adding a seat module that can rotate to facilitate the patient’s transfer. In the current version of the
prototype, the seat module can move only back/forwards, and up/down. The lack of a visual countdown
for the patient prior to the start of the training, and safety precautions in the software were also reported
by some therapists as needed to improve the overall usability of the device. One therapist noted that the
calibration should be appropriate also for patients with limb length discrepancy (difference between left
and right legs), where as the current calibration process takes into consideration only symmetric limb
length calibration.

The exergames employed for this study were simple two degrees of freedom games, where the patient
performs in a two dimensional virtual environment while exercising. Compared to current state-of-the-
art games and virtual reality scenarios [39,40], the games developed here may appear monotone and
uninteresting for paediatric patients after a certain time. However, despite the simplicity of the two
exergames developed for the device, all patients showed high interest and enjoyment during training
and wanted to increase the duration of the training session. Generally, the therapists praised the device
interactivity, and the possibility to train the left and right legs independently.

Additional features and control strategies are needed to enable the assessment of recovery progress. In
clinical and sports environments, in addition to muscle strengthening and musculoskeletal conditioning,
leg-press devices can be employed as assessment tools. The one-repetition maximum test (1-RM)
employs the leg-press form of exercise to evaluate the different performance parameters [41,42]. Kirk
et al. [43] used leg-press exercise for training and assessing gait function in adults with cerebral palsy,
and Stravic et al. [44] employed a modified leg-press machine to assess differences in muscle power in
stroke survivors. Furthermore, leg-press devices have been proved to be feasible for cardiopulmonary
exercise testing and training [45,46]. The interactive leg-press presented in this work could provide
accurate quantitative measures for these kinds of test. These evaluation strategies might also be useful for
paediatric neurorehabilitation recovery assessment.

Current leg-press training devices (i.e. LegoPress [33] and Allegro [32]) are designed mainly for adults’
rehabilitation and muscle strengthening and conditioning, in terms of design, actuators, and training
modes. With a compact design, interactive training modes and exergames, the robotic system proposed in
this study showed promise for paediatric rehabilitation applications.

A limitation of this study is that the current version of the device does not include small knee ranges of
motion. An error occurred during the calibration phase for the patient suffering from limited knee range
of motion, therefore, this patient (Patient 1) could not perform the training session. Despite the promising
outcomes, further changes and improvements in the hardware and software are warranted, following the
evaluations of patients and therapists.

While this study has served to establish technical feasibility of the device, further developments and
evaluation studies will be required to assess clinical effectiveness. This would involve the addition of
software to monitor and assess patients’ progress in rehabilitation, and the necessity to conduct controlled
clinical studies to evaluate effectiveness in comparison to standard therapy and to similar devices.
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6. Conclusion

This study proposed an interactive lower limb training device for children with different neuromuscular
impairments. The aim of this study, which was to assess technical feasibility of the new paediatric device,
is deemed to have been met, both in terms of technical feasibility and user acceptance. The experimental
results show quantitatively that the proposed training modes are usable and that the numerical outcomes
are satisfactory.
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